•水利与土木工程•

DOI:10.15961/j.jsuese.201800318

基于短期室内试验推导长期稳态蠕变率的盐岩本构模型

李梦瑶¹, 苟 杨^{2,3}, 侯正猛^{1,2,3*}

(1.四川大学 建筑与环境学院,四川 成都 610065; 2.德国克劳斯塔尔工业大学 石油天然气工程研究所,克劳斯塔尔 38678; 3.德国下萨克森州能源研究中心,哥斯拉尔 38640)

摘 要:由于试验时间的限制,短期室内试验测得的稳态蠕变速率往往为现场实测的5~50倍,故如何通过持续时间较短的蠕变试验结果推求出盐岩长期稳态蠕变率是盐岩蠕变特性研究中的一大难点。基于盐岩蠕变特性的现有理论研究,提出利用新的本构模型解决上述难题。结合典型盐岩蠕变本构模型Lubby2和IfG-G&S的优点,提出能够描述盐岩从一期自动进入二期蠕变全过程,且能够进一步发展为考虑蠕变损伤和失稳的Lubby2_I-II模型。基于江苏金坛盐岩的试验数据,求得3个蠕变本构模型的参数,并用以计算盐样的稳态蠕变率和金坛储气库的变形量。结果表明:Lubby2_I-II模型不仅能够较好地描述盐样的实测蠕变曲线,且与金坛储气库二期稳态蠕变率的反演现场值接近。这一结果很好地验证了Lubby2_I-II模型基于短期室内试验推导现场条件下的盐岩长期稳态蠕变率的可靠性。

关键词:盐岩蠕变;本构模型;稳态蠕变率;Lubby2;IfG-G&S;Lubby2_Ⅰ-Ⅱ模型 中图分类号:TU45 文献标志码:A 文章编号:2096-3246(2018)05-0138-07

Rock Salt Creep Constitutive Model to Predict the Long-term Stationary Creep Rate with Short-term Laboratory Experimental Data

LI Mengyao¹, GOU Yang^{2,3}, HOU Zhengmeng^{1,2,3*}

(1.College of Architectural and Environment, Sichuan Univ., Chengdu 610065, China; 2.Inst. of Petroleum Eng., Clausthal Univ. of Technol., Clausthal 38678, Germany; 3.Energy Research Center of Lower Saxony (EFZN), Goslar 38640, Germany)

Abstract: Due to the time limitation of creep tests in laboratories, the derived stationary creep rate is usually 5 to 50 times as large as it measured in-situ. Estimation of the long-term stationary creep rate from creep experiments with a short duration is a difficulty issue in salt mechanics. Based on the existing theoretical research on the creep behavior of rock salt, a new constitutive model was proposed to solve the above problem. By combining the advantages of two typical rock salt creep constitutive models of Lubby2 and IfG-G&S, a new Lubby2_ I - II model was developed. This new model can describe the automatic transform of the rock salt behavior from the transient creep into the stationary creep, and be further developed into a creep damage model. Based on the experimental data of the rock salt in Jintan, Jiangsu, the parameters of the above three creep models were determined. In addition, the stationary creep rate and deformation were calculated by using the obtained parameters, and then compared with the experimental data and the convergence of the rock salt cavern in Jintan. The results showed that the Lubby2_ I - II model can not only describe the creep experimental curve of the salt sample well, but also estimate the back analyzed long-term stationary creep rate of the rock salt in Jintan much better and more reliable. This good agreement confirms the reliability of the Lubby2_ I - II model for estimating the long-term stationary creep rate from short-term laboratory experimental data.

Key words: creep of rock salt; constitutive model; stationary creep rate; Lubby2; IfG-G&S; Lubby2_ I - II model

盐岩由于其极低的渗透率、良好的蠕变性能与 损伤恢复特性,成为国际上公认的能源储存和核废 料处置的理想介质^[1-2],对其力学特性的研究日益受 到重视。盐岩地下储库在国外建造与运营的经验表

收稿日期:2018-03-23

* 通信联系人 E-mail: hou@scu.edu.cn

网络出版时间:2018-08-30 00:57:00 网络出版地址:http://kns.cnki.net/kcms/detail/51.1773.TB.20180830.0057.015.html

http://jsuese.scu.edu.cn

基金项目:国家自然科学基金国际重大合作项目资助(51120145001)

作者简介:李梦瑶(1990—), 女, 博士生. 研究方向: 盐岩力学与工程. E-mail: limengyao19900606@126.com

明,盐岩地下储库在长期服务年限内,常发生储库失 稳、围岩变形大、有效容积率丧失严重等不利情形, 其根本原因除储库压力波动、顶板盖层垮塌之外,还 与盐岩自身的蠕变特性密切相关,因此对盐岩蠕变 特性的研究是一个十分重要的课题^[3]。

实际工程中,地下储库的盐岩在原始应力状态 被开挖扰动后,首先经历一期蠕变过程,而后进入并 长期处于二期蠕变状态,该阶段蠕变速率保持定值, 又称为稳态蠕变阶段。在偏应力水平不高的情况下, 稳态蠕变将持续数十年直到储库废弃。也即盐岩稳 态蠕变的特性对地下能源储库的安全营建和运营至 关重要。故如何确定盐岩的长期稳态蠕变率,成为盐 岩蠕变本构模型的研究重点之一。

工程现场的盐岩在极低的偏应力作用下,晶体 内部的离子扩散等促成了蠕变变形,其蠕变率很低, 难以测得^[4],盐岩完全进入稳态蠕变所需时间为 1~10年^[5];在室内试验中,盐岩完全进入稳态蠕变也 需要1年以上的时间。实际情况是,室内蠕变试验受 试验条件所限持续时间往往较短,一般每个加载阶 段约30 d,由此得到的稳态蠕变率远高于现场实测 值。图1为德国联邦地质和原材料研究院(BGR) 2006年对德国Morsleben地区的两个高纯度盐样进行 室内单轴蠕变试验的结果分析曲线^[6]。

由图1可知,在试验进行至30d,蠕变率似乎减小 到了恒定值,但当试验继续进行,200d后蠕变率依然 在减小。根据相关研究,盐岩现场实测的二期蠕变率 比室内较短试验时间得到的值低5~50倍^[7]。工程实 践中,没有太长的时间留给实验室进行长达数年的 蠕变试验,故如何由盐岩的一期蠕变数据推求长期 稳态蠕变率,成为亟待解决的难题。

针对上述问题,一方面,通过试验手段解决,如 德国学者^[8]通过提高试验温度在合理的时间内获得 可靠的盐岩稳态蠕变率;另一方面,通过理论研究, 建立新的蠕变本构模型。本文旨在基于对一些典型 盐岩蠕变本构模型的研究,提出能够描述盐岩从一 期蠕变自动进入二期蠕变的本构模型,且能够通过 实验室所得一期蠕变的数据推求盐岩稳态蠕变率, 即达到用数学方法解决试验难题的目的。

1 典型盐岩蠕变本构模型

对于盐岩这种软弱岩石,在恒定应力作用瞬间 产生弹性应变,随后发生蠕变,其典型蠕变曲线可分 为3个阶段,如图2所示^[9]。图2中:*AB*段为一期蠕变阶 段,表现为曲线斜率即应变速率逐渐减小,一期蠕变 率=瞬态蠕变率+稳态蠕变率;该段内卸载曲线沿 *EFG*路径变化,这时塑性应变为0,材料仍保持黏弹 性。*BC*段为二期(稳态)蠕变阶段,表现为曲线斜率 即应变速率保持定值;此阶段瞬态蠕变率为0,二期 蠕变率=稳态蠕变率;卸载曲线将沿*HIJ*变化,最终 保持一定的永久变形。*CD*段为三期(加速)蠕变,该阶 段内,应变速率加速增长,并且将导致岩石迅速破坏^[9]。

Fig. 2 Typical creep curve of salt rock

蠕变变形是常荷载或变荷载作用下产生的与时间、温度相关的黏性变形。总的应变是弹性应变、温 度应变、塑性应变及黏性应变四者之和。

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}^{\mathrm{e}} + \boldsymbol{\varepsilon}^{\mathrm{t}} + \boldsymbol{\varepsilon}^{\mathrm{p}} + \boldsymbol{\varepsilon}^{\mathrm{v}} \tag{1}$$

由于盐穴埋深固定,其温度也恒定,室内试验在

等温条件下进行,故不考虑温度应变;塑性应变相对 较小可以忽略,则有:

$$\varepsilon = \varepsilon^{\rm e} + \varepsilon^{\rm v} \tag{2}$$

式中,弹性应变由胡克定律给出,黏性应变由蠕变本 构方程给出。

具体模型参数见表1。

符号	含义	单位
σ	应力, \sigma*=1 MPa	MPa
$\mathcal{E}_{\mathcal{E}_{tr}}, \mathcal{E}_{s}$	应变、瞬态蠕变、稳态蠕变	_
$\dot{\varepsilon}, \dot{\varepsilon}_{\rm tr}, \dot{\varepsilon}_{\rm s}, \dot{\varepsilon}_{\rm cr}$	应变率、瞬态蠕变率、稳态蠕变率、蠕变率	1/d
ε^e , ε^t , ε^p , ε^v	弹性应变、温度应变、塑性应变、黏性应变	_
Т	温度, T*=1 K	K
$\dot{\varepsilon}_{ij}$, $\dot{\varepsilon}_{ij}^{v}$	应变率张量、黏性应变率张量	1/d
$\max(\varepsilon_{tr})$	最大一期蠕变	_
$\sigma_{\rm v}$	Von Mises应力, 三轴压缩试验中 $\sigma_v = \sigma_1 - \sigma_3$	MPa
s _{ij}	$\sigma_{ij} - I_1/3 \cdot \delta_{ij}$,应力偏量张量	MPa
$\overline{G}_{\mathrm{k}}$	Kelvin剪切模量	MPa
$\overline{\eta}_k$	Kelvin黏滞系数	MPa∙d
$\overline{\eta}_{ m m}$	Maxwell黏滞系数	MPa∙d
$\overline{G}^*_{\mathrm{k}}$	Lubby2本构模型参数	MPa
$\overline{\eta}_k^*, \overline{\eta}_m^*$	Lubby2本构模型参数	MPa∙d
k_1 , k_2 , m	Lubby2本构模型参数	1/MPa
l	Lubby2本构模型参数	1/K
t ₀	盐岩进入稳态蠕变所需时间	d
β、μ	lfG-G&S本构模型参数	_
Α	lfG-G&S本构模型参数	1/d

1.1 Lubby2模型

Lubby2模型属于元件组合模型,建立在Burgers模型^[10]之上。Burgers模型由描述瞬态蠕变的 Kelvin模型和描述稳态蠕变的Maxwell模型串联而 成,其本构方程为:

$$\dot{\varepsilon} = \dot{\varepsilon}_{\rm tr} + \dot{\varepsilon}_{\rm s} = \frac{\sigma_{\rm v}}{\overline{\eta}_{\rm k}} \cdot e^{-\frac{\overline{\sigma}_{\rm k}}{\overline{\eta}_{\rm k}}t} + \frac{1}{\overline{\eta}_{\rm m}} \cdot \sigma_{\rm v} \qquad (3)$$

Lubby2模型在Burgers模型基础上假设参数 \overline{G}_k 、 $\overline{\eta}_k$ 、 $\overline{\eta}_m$ 与 σ_v 指数相关,如式(7)~(9)所示。Lubby2模 型本构方程为:

$$\dot{\varepsilon} = \left[\frac{1}{\overline{\eta}_{k}(\sigma_{v})} \cdot \left(1 - \frac{\varepsilon_{tr}}{\max(\varepsilon_{tr})}\right) + \frac{1}{\overline{\eta}_{m}(\sigma_{v})}\right] \cdot \sigma_{v} \qquad (4)$$

$$\dot{\varepsilon}_{ij}^{v} = \frac{3}{2} \cdot \left[\frac{1}{\overline{\eta}_{k}(\sigma_{v})} \cdot \left(1 - \frac{\varepsilon_{tr}}{\max(\varepsilon_{tr})} \right) + \frac{1}{\overline{\eta}_{m}(\sigma_{v})} \right] \cdot S_{ij} \quad (5)$$

$$\max(\varepsilon_{\rm tr}) = \frac{\sigma_{\rm v}}{\overline{G}_{\rm k}(\sigma_{\rm v})} \tag{6}$$

$$\overline{G}_{k}(\sigma_{v}) = \overline{G}_{k}^{*} \cdot \exp(k_{1} \cdot \sigma_{v})$$
 (7)

$$\overline{\eta}_{k}(\sigma_{v}) = \overline{\eta}_{k}^{*} \cdot \exp(k_{2} \cdot \sigma_{v})$$
(8)

$$\overline{\eta}_{\rm m}(\sigma_{\rm v}) = \overline{\eta}_{\rm m}^* \cdot \exp(m \cdot \sigma_{\rm v}) \cdot \exp(l \cdot T) \tag{9}$$

Lubby2模型共有7个参数需要确定,即 \overline{G}_{k}^{*} 、 η_{k}^{*} 、 $\overline{\eta}_{m}^{*}$ 、 k_{1} 、 k_{2} 、m和l。但在一般蠕变试验中,温度T为恒定 值,此时参数l取值为0。

由式(6)可得:

$$\overline{G}_{k}(\sigma_{v}) = \frac{\sigma_{v}}{\max(\varepsilon_{tr})}$$
(10)

由式(6)及(3)可得:

$$\overline{\eta}_{k}(\sigma_{v}) = \frac{\sigma_{v}}{\dot{\varepsilon}_{tr}} \cdot \left(1 - \frac{\varepsilon_{tr}}{\max\left(\varepsilon_{tr}\right)}\right)$$
(11)

由式(3)可得:

$$\bar{\eta}_{\rm m}(\sigma_{\rm v}) = \frac{\sigma_{\rm v}}{\dot{\varepsilon}_{\rm s}} \tag{12}$$

根据蠕变试验结果及式(10)~(12)即求出某一 固定应力状态下 \overline{G}_k 、 $\overline{\eta}_k$ 、 $\overline{\eta}_m$ 的值。对于n级蠕变试验, 可获得n组 \overline{G}_k 、 $\overline{\eta}_k$ 、 $\overline{\eta}_m$ 数据。

根据式(7)~(9)可知除l外其他6个模型参数与 \overline{G}_k 、 $\overline{\eta}_k$ 、 $\overline{\eta}_m$ 之间的关系,进而求得这些参数。

1.2 IfG-G&S模型

IfG-G&S模型为经验模型,是通过大量的蠕变试验,利用试验曲线拟合而成的。该模型分为两种情况^[7,11-12]:当瞬态蠕变 ε_{tr} 小于最大值max(ε_{tr})时,瞬态蠕变率逐渐减小,稳态蠕变率增大,本构方程由式(13)给出;当 ε_{tr} 增大至max(ε_{tr})时,瞬态蠕变率减至0,稳态蠕变率增至定值,由一期蠕变进入二期稳态蠕变阶段,本构方程由式(14)给出。

$$\begin{cases} \dot{\varepsilon} = A \cdot \left(\frac{\sigma_{v}}{\sigma^{*}}\right)^{\beta} / \varepsilon_{tr}^{\mu}, \ \dot{\varepsilon}_{s} = \frac{\varepsilon_{tr}}{t_{0}}; \\ \dot{\varepsilon}_{tr} = \dot{\varepsilon} - \dot{\varepsilon}_{s} = A \cdot \left(\frac{\sigma_{v}}{\sigma^{*}}\right)^{\beta} / \varepsilon_{tr}^{\mu} - \frac{\varepsilon_{tr}}{t_{0}}; \\ \varepsilon_{tr} < \max(\varepsilon_{tr}) \end{cases}$$
(13)

$$\begin{cases} \dot{\varepsilon} = \dot{\varepsilon}_{s} = A_{2} \cdot \left(\frac{\sigma_{v}}{\sigma^{*}}\right)^{n}, \dot{\varepsilon}_{tr} = 0; \\ A_{2} = A \cdot \left(At_{0}\right)^{-\frac{\mu}{\mu+1}} n = \frac{\beta}{\mu+1}; \\ \varepsilon_{tr} = \max(\varepsilon_{tr}) \end{cases}$$
(14)

式中,现场试验取 t_0 = 3 650 d,室内试验取 t_0 = 365 d。 不同于Lubby2模型分别用两个元件组合模型表 现一期、二期蠕变过程, IfG-G&S模型在瞬态蠕变应 变量达到最大值后自动进入二期稳态蠕变, 具体表 现在: 当 ε_{tr} 增大至max(ε_{tr})时, 瞬态蠕变率减至0, 即式 (13)中第3个式子等于0, 由此可以推导出式(14); 分 析式(14), 发现当应力状态一定时, 总蠕变率为一常 数, 即盐岩一期蠕变结束并进入了二期稳态蠕变阶 段。式(14)中的二期蠕变本构方程与Norton蠕变本 构模型是一致的。

IfG-G&S模型共有3个未知参数,即 β_{μ} ,A需要确定。在室内试验中,试件进入稳态蠕变需要约一年时间,即令 t_0 = 365 d,由于试验持续时间较短,试样仍处于一期蠕变阶段。根据式(13)及试验数据,可求得瞬态蠕变 ε_{tro} 对式(13)中第一个式子两边取对数,得:

$$\ln \dot{\varepsilon} = \ln A + \beta \cdot \ln \sigma_{\rm v} - \mu \cdot \ln \varepsilon_{\rm tr} \qquad (15)$$

当 σ_v 不变时, ln $\dot{\epsilon}$ 与ln ε_u 为线性关系。根据多级 蠕变试验数据, 可求得蠕变参数 μ 及一系列与不同 σ_v 对应的ln $A+\beta\cdot$ ln σ_v 值, 进而得到蠕变参数A和 β 。

需要说明的是,当参数获得后若要使用该模型 计算蠕变率,需根据试验值给定一个很小的蠕变初 值,否则式(13)第一个式子在t=0时刻,即瞬态蠕变 量为0的情况下无意义。

另外,与Lubby2模型一样,IfG-G&S模型所描述的蠕变率也可以推广到3维情况,通过偏应力张量表达。

2 基于室内试验能够推求长期稳态蠕变率 的Lubby2 Ⅰ-Ⅱ模型

Lubby2模型基于元件组合模型,分别使用非线 性Kelvin模型和非线性Maxwell模型描述了一期和二 期蠕变,参数物理意义明确,且时间不是直接参数 (这有利于模拟较为复杂的岩腔运营过程),与试验 数据吻合度高;而基于Lubby2模型,Hou等^[13]考虑了 盐岩的延展性变形、变位、变形硬化和变形恢复、损 伤及损伤复原机制,进而提出Hou/Lux本构模型,且 应用广泛。IfG-G&S模型是现有可查文献提到的唯一 一个能够描述盐岩从一期蠕变自动进入二期蠕变的 本构模型,且能通过实验室试验测得的一期蠕变数 据推求出二期稳态蠕变率。

基于Lubby2模型精确度高和能发展为蠕变损伤 模型的优点,以及IfG-G&S模型能够通过实验室数据 推求盐岩二期稳态蠕变率的优势,结合两种模型的 特点,提出新的能够通过实验室数据推求盐岩二期 稳态蠕变率并且能够延伸到Hou/Lux模型中的本构 模型,即Lubby2 I-II模型:

$$\begin{cases} \dot{\varepsilon}_{\rm tr} = \frac{\sigma_{\rm v}}{\overline{\eta}_{\rm k}(\sigma_{\rm v})} \cdot \left(1 - \frac{\varepsilon_{\rm tr}}{\max\left(\varepsilon_{\rm tr}\right)}\right), & \dot{\varepsilon}_{\rm s} = \frac{\varepsilon_{\rm tr}}{t_{\rm 0}}; \\ \dot{\varepsilon} = \dot{\varepsilon}_{\rm tr} + \dot{\varepsilon}_{\rm s} = \frac{\sigma_{\rm v}}{\overline{\eta}_{\rm k}(\sigma_{\rm v})} \cdot \left(1 - \frac{\varepsilon_{\rm tr}}{\max\left(\varepsilon_{\rm tr}\right)}\right) + \frac{\varepsilon_{\rm tr}}{t_{\rm 0}}; \end{cases}$$
(16)

$$\dot{\varepsilon} = \dot{\varepsilon}_{s} = \frac{\max(\varepsilon_{tr})}{t_{0}}, \quad \dot{\varepsilon}_{tr} = 0(\varepsilon_{tr} = \max(\varepsilon_{tr})) \quad (17)$$

$$\max(\varepsilon_{\rm tr}) = \frac{\sigma_{\rm v}}{\overline{G}_{\rm k}(\sigma_{\rm v})} \tag{18}$$

$$\overline{G}_{k}(\sigma_{v}) = \overline{G}_{k}^{*} \cdot \exp(k_{1} \cdot \sigma_{v})$$
 (19)

$$\overline{\eta}_{k}(\sigma_{v}) = \overline{\eta}_{k}^{*} \cdot \exp(k_{2} \cdot \sigma_{v}) \qquad (20)$$

式中,所有符号含义同Lubby2模型。

式(16)和(17)分别描述盐岩的一期和二期蠕变 阶段。式(16)中,瞬态蠕变本构方程借鉴Lubby2模型,以非线性Kelvin模型为基础建立,瞬态蠕变率随 时间逐渐减小。式(16)中稳态蠕变率的变化规律与 IfG-G&S模型一致,即通过参数t₀与瞬态蠕变ε_{tr}产生 联系,并随着ε_{tr}的增大而增大。

式(16)和(17)中参数 t_0 为一期蠕变阶段持续时间的实验室或工程现场经验值。Lubby2_I-II和IfG-G&S模型之所以能够由一期蠕变自动进入二期稳态 蠕变,核心原因就在于式(16)第2个式子给出的稳态 蠕变率与瞬态蠕变 ε_{tr} 及 t_0 的关系。当式(16)中的瞬态 蠕变 ε_{tr} 增大至最大值max(ε_{tr})时,瞬态蠕变率减至0, 稳态蠕变率增至稳定最大值,表明此时盐岩由一期 蠕变阶段自动进入了二期稳态蠕变阶段,蠕变率由 式(17)给出。该模型既体现了组合模型简单直观的 优点,又能够估算稳态蠕变率,并且可以进一步发展 为蠕变损伤模型。

根据式(16)及一期蠕变试验数据,可求得瞬态 蠕变率*ɛ*_{tr}和瞬态蠕变*ɛ*_{tr}。展开式(16)第一个式子:

$$\dot{\varepsilon}_{\rm tr} = \frac{\sigma_{\rm v}}{\overline{\eta}_{\rm k}(\sigma_{\rm v})} - \frac{\sigma_{\rm v}}{\overline{\eta}_{\rm k}(\sigma_{\rm v}) \cdot \max(\varepsilon_{\rm tr})} \cdot \varepsilon_{\rm tr}$$
(21)

当 σ_v 不变时, $\dot{\epsilon}_u$ 与 ϵ_u 为线性关系。根据多级蠕变 试验数据,可求得一系列与不同 σ_v 对应的 $\bar{\eta}_k$ 、max(ϵ_u) 值。再将max(ϵ_u)带入式(18),可求得与不同 σ_v 对应 的 \bar{G}_k 值。

Lubby2_I-II模型共有4个参数,即 η_k^* 、 k_2 、 \overline{G}_k^* 、 k_1 ,此处以 η_k^* 、 k_2 为例介绍参数的求解。

对式(20)两边取对数,得:

$$\ln \overline{\eta}_{k} = \ln \overline{\eta}_{k}^{*} + k_{2}\sigma_{v} \qquad (22)$$

由于 $\vec{\eta}_k \pi k_2$ 为常数,则ln $\bar{\eta}_k - \sigma_v$ 为线性关系。用 直线趋近多级蠕变试验数据结果时,该直线斜率为 k_2 ,与ln $\bar{\eta}_k$ 轴(一般为Y轴)截距为ln $\bar{\eta}_k$ 。由此可确定 $\overline{\eta}_{k}^{*}$ 、 k_{2} 值。

同理 \overline{G}_k 、 k_1 的值也可分别通过作 $\ln \overline{G}_k - \sigma_v$ 关系曲 线求出。

根据Von Mises应力的定义及蠕变流动法则, Lubby2_Ⅰ-Ⅱ模型描述的蠕变率可通过式(23)推广 到3维状态:

$$\dot{\varepsilon}_{ij} = \dot{\varepsilon}_{cr} \cdot \frac{\partial \sigma_{v}}{\partial S_{ij}} = \frac{3}{2} \cdot \dot{\varepsilon}_{cr} \cdot \frac{s_{ij}}{\sigma_{v}}$$
(23)

3 数据分析和模型对比

根据针对中国金坛盐岩试件进行的三轴压缩蠕 变的试验数据,计算上述3种模型的参数,并运用所 得参数和相应模型计算蠕变和蠕变率,与试验数据 进行对比。蠕变试验数据来自谢凌志^[14],该蠕变试验 是在围压20 MPa、温度45℃的条件下,分别对盐样 K1、K2、K3进行了4阶段三轴压缩,试验测得盐样弹 性模量为18 000 MPa, 泊松比为0.3。

3.1 模型参数

根据蠕变试验数据和第1、2节中介绍的模型参数求解方法,即可得到中国金坛盐岩试件的蠕变参数。中国金坛盐岩试件Lubby2模型的6个参数:

 $\overline{\eta}_{m}^{*} = 6.14 \times 10^{5} \text{ MPa} \cdot \text{d}, \quad m = -0.136 \text{ MPa}^{-1},$

 $\bar{\eta}_{k}^{*} = 1.75 \times 10^{5} \text{ MPa} \cdot \text{d}, \quad k_{2} = -0.187 \text{ MPa}^{-1},$

 $\overline{G}_{k}^{*} = 1.53 \times 10^{4}$ MPa, $k_{1} = -0.127$ MPa⁻¹.

中国金坛盐岩试件IfG-G&S模型的3个参数:

 $A = 2.09 \times 10^{-24} \text{ d}^{-1}, \quad \beta = 12.132, \quad \mu = 2.957.$

中国金坛盐岩试件Lubby2_Ⅰ-Ⅱ模型的4个 参数:

 $\overline{\eta}_{k}^{*} = 1.36 \times 10^{5} \text{ MPa} \cdot \text{d}, \quad k_{2} = -0.151 \text{ MPa}^{-1},$

 $\overline{G}_{k}^{*} = 6.03 \times 10^{3}$ MPa, $k_{1} = -0.114$ MPa⁻¹.

3.2 模型计算蠕变和蠕变率的对比分析

分别使用Lubby2、IfG-G&S、Lubby2_Ⅰ-Ⅱ模型 及其相对应的参数计算金坛盐岩的二期稳态蠕变率 和轴向应变。

IfG-G&S和Lubby2_I-I - II 模型认为盐样的稳态 蠕变率的改变是由瞬态蠕变决定,盐样瞬态蠕变率 减至0时所对应的总蠕变率就是二期稳态蠕变率。

此外,资料显示,金坛储气库西2腔埋深约1000m, 工作气压为8~13.5 MPa(盐腔围岩偏应力约为15~ 10 MPa),运行方式为注采气2个月、恒压3个月;运营 5年后的腔体体积损失约为1.2%,腔体顶板下沉0.3 m, 底板上鼓0.6 m^[15]。根据这些数据,使用Flac3D数值模 拟软件建立西2腔模型,在数值模拟时使用Norton本 构模型反演出蠕变参数A₂ = 1.83×10⁻⁹ d⁻¹, n = 3.8, 进而用以计算二期稳态蠕变率^[16],且认定该稳态蠕 变率为现场值。将4个本构模型的计算结果进行对 比,见表2。数值模拟中,泥岩、盐岩及泥岩夹层的基 本力学参数是根据金坛储气库岩性相关力学试验^[2] 得到的,见表3。

表 2 不同本构模型求得的金坛盐岩稳态蠕变率

Tab. 2Calculated stationary creep rates of the salt rock
in Jintan with different constitutive models

偏应力 · /MPa	二期稳态蠕变率/d ⁻¹					
	Lubby2 (模型计算)	IfG-G&S (模型计算)	Lubby2_I-II (模型计算)	Norton (现场反演)		
8	3.87×10 ⁻⁵	7.41×10 ⁻⁶	9.12×10 ⁻⁶	4.96×10 ⁻⁶		
10	6.35×10 ⁻⁵	1.47×10^{-5}	1.43×10 ⁻⁵	1.16×10 ⁻⁵		
12	9.99×10 ⁻⁵	2.57×10^{-5}	2.17×10^{-5}	2.31×10^{-5}		
15	1.88×10^{-4}	5.09×10 ⁻⁵	3.82×10^{-5}	5.40×10^{-5}		
20	4.94×10 ⁻⁴	1.23×10 ⁻⁴	9.06×10 ⁻⁵	1.61×10^{-4}		

表 3 金坛储气库基本力学参数

 Tab. 3
 Basic mechanical parameters of rocks from Jintan underground gas storage

岩性	弹模/MPa	泊松比	内聚力/MPa	内摩擦角/(°)	容重/MPa
泥岩	10 000	0.3	4.35	30	0.023 5
盐岩	18 000	0.3	_	—	0.022 2
泥岩夹层	4 000	0.3	_	_	0.023 5

由表2可知, Lubby2模型计算值与每一加载阶 段结束时的蠕变率试验值一致; IfG-G&S和 Lubby2_I-II模型计算值都比Lubby2模型计算值 小4.0~5.5倍, 且都与金坛储气库二期稳态蠕变率 反演的现场值接近, 尤其是当偏应力为10~15 MPa时。这很好地验证了使用Lubby2_I-II模型计 算盐岩稳态蠕变率的可靠性。

图3~5分别为盐样K1、K2、K3轴向应变试验值 与Lubby2、IfG-G&S、Lubby2_I-II这3个模型计算值 的对比。盐样在所有加载阶段都未出现三期蠕变。图3~ 5中模型计算的应变值包含了蠕变和弹性变形两部 分,其中弹性应变由胡克定律计算得出。

由图3~5可知, 描述盐样短期蠕变试验的情况 时, Lubby2模型准确性最好, 其次为Lubby2_I-I 模 型, IfG-G&S模型误差最大。进行误差分析: Lubby2模 型认定各加载段结束时盐样已经进入稳态蠕变阶 段, 由此求得参数用以计算蠕变曲线, 即由试验推试 验, 故与试验曲线吻合度最高; Lubby2_I-II 和IfG-G&S模型是根据盐样短期试验数据推导其长期稳态 蠕变参数, 即由室内推现场, 使用长期蠕变参数反算 短期试验曲线, 因而产生误差。

图 3 盐样K1轴向应变的试验值与模型计算值对比

Fig. 3 Comparison between experimental and calculated axial strain of rock salt specimen K1

图 4 盐样K2轴向应变的试验值与模型计算值对比

Fig. 4 Comparison of experimental and calculated axial strain of rock salt specimen K2

Fig. 5 Comparison of experimental and calculated axial strain of rock salt specimen K3

综上可见, Lubby2_ I - II 模型在推求盐岩长期稳态蠕变率的方面优于Lubby2模型; 作为基于室内试验能够推求长期稳态蠕变率的模型, 其在拟合室内

试验曲线方面优于IfG-G&S模型。

4 结 论

1)Lubby2模型是基于元件组合模型Burgers对参数进行非线性处理得到的。分别用两个元件组合模型反映一期、二期蠕变,既体现了组合模型简单直观的优点,又针对Burgers模型无法描述非线性变形的缺点做出改进。另外,Lubby2模型还可以进一步发展为考虑了盐岩变形硬化、变形恢复、损伤及损伤复原机制的Hou/Lux模型。

2)IfG-G&S是能够描述盐岩由一期蠕变自动进 入二期蠕变过程的经验模型,能够估算现场长期稳 态蠕变率。

3)Lubby2_Ⅰ-Ⅱ模型兼具Lubby2和IfG-G&S模型的优点:能直观有效地用元件组合模型反映盐岩的瞬态蠕变,具有较高的准确性,且最终可以引入应用广泛的Hou/Lux蠕变损伤模型中;解决了用持续时间较短的室内试验数据推求盐岩的长期稳态蠕变率的关键性问题,达到了用数学方法解决试验难题的目的。

4)使用Lubby2_ Ⅰ-Ⅱ和IfG-G&S模型计算出的 长期稳态蠕变率比室内试验值小4~5.5倍,且与金坛 储气库二期稳态蠕变率的反演现场值接近。这一结 果很好地验证了Lubby2_ Ⅰ-Ⅱ和IfG-G&S模型在估 算盐岩稳态蠕变率方面的可靠性。

5)对于多级加载蠕变试验,用能够由短期试验 推导盐岩长期稳态蠕变率的两个蠕变模型拟合实测 蠕变曲线,Lubby2_I-II模型的准确性高于IfG-G&S 模型。

总体来说,Lubby2_Ⅰ-Ⅱ模型能够基于盐岩短期 室内试验推导其长期稳态蠕变率,并且能够很好地 描述盐样的实测蠕变曲线。

参考文献:

- [1] Chen Jianwen, Yang Chunhe. Mesoscopic deformation based plastic constitutive model of salt rock[J]. Rock and Soil Mechanics, 2015, 36(1):117–122. [陈剑文,杨春和.基于 细观变形理论的盐岩塑性本构模型研究[J]. 岩土力 学, 2015, 36(1):117–122.]
- [2] Xing Wei,Zhao Juan,Dusterloh U,et al.Experimental study of mechanical and hydraulic properties of bedded rock salt from the Jintan location[J].Acta Geotechnica,2014,9(1): 145–151.
- [3] Jing Wenjun, Yang Chunhe, Chen Feng. Risk assessment of salt cavern oil/gas storage based on accident statistical analysis[J]. Rock and Soil Mechanics, 2011, 32(6):1787–1793.
 [井文君,杨春和,陈锋.基于事故统计分析的盐岩地下油

/气储库风险评价[J].岩土力学,2011,32(6):1787-1793.]

- [4] Hunsche U,Hampel A.Rock salt The mechanical properties of the host rock material for a radioactive waste repository[J].Engineering Geology,1999,52:271–291.
- [5] Lux K H.Gebirgsmechanischer Entwurf und Felderfahrungen im Salzkavernenbau[M].Stuttgart in Germany: Ferdinand Enke Verlag,1984.
- [6] BGR.Comparison of constitutive models for rock salt.Final report of a research project funded by the German Federal Ministry of Education and Research[R].Hannover:Federal Institute for Geosciences and Natural Resources,2006.
- [7] Günther R M.Erweiterter Dehnungs-Verfestigungs-Ansatz,Phänomenologisches Stoffmodell für duktile Salzgesteine zur Beschreibung primären,sekundären und tertiären Kriechens[D].Freiberg:Technischen Universität Bergakademie Freiberg,2009.
- [8] Günther R M,Salzer K,Popp T,et al.Steady-state creep of rock salt:Improved approaches for lab determination and modelling[J].Rock Mechanics and Rock Engineering, 2015,48:2603–2613.
- [9] 徐志英.岩石力学[M].3版.北京:中国水利水电出版社, 2007.
- [10] Burgers J M.First report on viscosity and plasticity[J].Protoplasma,1935,24(1):631–632.
- [11] Schulze O,Heemann U,Zetsche F,et al.Comparison of advanced constitutive models for the mechanical behavior of rock salt— Results from a joint research project-I.Modeling of deformation processes and benchmark calculations[C]// Proceedings of 6th Conference on Mechanical Behavior of

Salt.Hannover:CRC Press,2007.

- [12] Hou Z M, Wolters R, Rokahr R, et al. Comparison of advanced constitutive models for the mechanical behavior of rock salt— Results from a joint research project- II .Numerical modeling of two in situ case studies and comparison[C]// Proceedings of 6th Conference on Mechanical Behavior of Salt.Hannover:CRC Press,2007.
- [13] Hou Z M.Untersuchungen zum Nachweis der Standsicherheit für Untertagedeponien im Salzgebirge[D].Clausthal-Zellerfeld:Technical University of Clausthal,1997.
- [14] Xie Lingzhi.Research on salt caverns for CO₂ sequestration geotechnical engineering[D].Chengdu:Sichuan University,2012.[谢凌志.盐穴CO₂封存库的基础研究[D].成 都:四川大学,2012.]
- [15] Yang Haijun,Guo Kai,Li Jianjun.Analysis on long-term operation and interval optimization of pressure for single cavity injection/production in underground salt cavern gas storage Taking the cavity of Well Xi-2 in salt cavern gas storage in Jintan as an example[J].Oil & Gas Storage and Transportation,2015,34(9):945–950.[杨海军,郭凯,李建君.盐穴储气库单腔长期注采运行分析及注采压力区间优化——以金坛盐穴储气库西2井腔体为例[J].油气储运,2015, 34(9):945–950.]
- [16] Li Mengyao.Creep constitutive model for highly impure rock salt and optimal design for underground energy storages of thin-layered rock salt in China[D].Chengdu:Sichuan University,2017.[李梦瑶.中国高杂质盐岩蠕变模型和薄 层状盐岩能源储库的优化设计[D].成都:四川大学,2017.]

(编辑 李轶楠)

¢°*	***************************************	h
÷.	引用格式: Li Mengyao, Gou Yang, Hou Zhengmeng. Rock salt creep constitutive model to predict the long-term stationary	
÷.	creep rate with short-term laboratory experimental data[J].Advanced Engineering Sciences,2018,50(5):138-144.[李梦瑶,苟	ł
	杨,侯正猛.基于短期室内试验推导长期稳态蠕变率的盐岩本构模型[J].工程科学与技术,2018,50(5):138-144.]	٠
•		۶